1. Let $f(x) = \frac{1-\sqrt{x}}{1-x}$, $g(x) = \frac{\sin x}{x}$ and $h(x) = \frac{(2+x)^2-4}{x}$. Find the desired limits.

- (a) $\lim_{x \to 1} f(x)$.
- (b) $\lim_{x\to 0} g \cdot h(x)$.
- (c) $\lim_{x\to 2} \frac{f}{g}(x)$.
- (d) $\lim_{x \to 1} \frac{h}{f}(x)$.
- (e) $\lim_{x \to \pi} (f \cdot h g \cdot f)(x)$.

2. Find explicitly the (best possible) continuous extension of f, g and h from problem 1.

- 3. Use the intermediate value theorem.
 - (a) Find an interval on which $y = x^3 x 1$ has a zero.
 - (b) Show that the equation $\sqrt{2x+5} = 4 x^2$ has a solution.
 - (c) Show that the equation $\cos x = x^2$ has a solution.
 - (d) Show that the graph of the equation $x^3 3x$ crosses the line y = 1.
 - (e*) Let f be a continuous function on the interval [0,1]. Suppose that $0 \le f(x) \le 1$ for every $x \in [0,1]$. Show that there must be a number $c \in [0,1]$ such that f(c) = c. (c is called a fixed point of f)

- 4. Do the following problems involving limits at infinity.
 - (a) Find $\lim_{x\to\infty} x \frac{\sin 4/x}{2}$.
 - (b) Find all asymptotes of $y = \left(\frac{x^2+x-1}{8x^2-3}\right)^{1/3}$.
 - (c) Find all asymptotes of $h(t) = \frac{t^3 + 7t^2 2}{t^2 t + 1}$.
 - (d) Consider $g(x) = \left(\frac{x^2}{2} \frac{1}{x}\right)$. Find the limits of g(x) as $x \to 0^+$, $x \to 0^-$, $x \to \sqrt[3]{2}$ and $x \to -1$.