Exam 1 Practice Problems

1. Let $f(x)=\frac{1-\sqrt{x}}{1-x}, g(x)=\frac{\sin x}{x}$ and $h(x)=\frac{(2+x)^{2}-4}{x}$. Find the desired limits.
(a) $\lim _{x \rightarrow 1} f(x)$.
(b) $\lim _{x \rightarrow 0} g \cdot h(x)$.
(c) $\lim _{x \rightarrow 2} \frac{f}{g}(x)$.
(d) $\lim _{x \rightarrow 1} \frac{h}{f}(x)$.
(e) $\lim _{x \rightarrow \pi}(f \cdot h-g \cdot f)(x)$.
2. Find explicitly the (best possible) continuous extension of f, g and h from problem 1.
3. Use the intermediate value theorem.
(a) Find an interval on which $y=x^{3}-x-1$ has a zero.
(b) Show that the equation $\sqrt{2 x+5}=4-x^{2}$ has a solution.
(c) Show that the equation $\cos x=x^{2}$ has a solution.
(d) Show that the graph of the equation $x^{3}-3 x$ crosses the line $y=1$.
(e^{*}) Let f be a continuous function on the interval $[0,1]$. Suppose that $0 \leq f(x) \leq 1$ for every $x \in[0,1]$. Show that there must be a number $c \in[0,1]$ such that $f(c)=c$. $(c$ is called a fixed point of $f)$
4. Do the following problems involving limits at infinity.
(a) Find $\lim _{x \rightarrow \infty} x \frac{\sin 4 / x}{2}$.
(b) Find all asymptotes of $y=\left(\frac{x^{2}+x-1}{8 x^{2}-3}\right)^{1 / 3}$.
(c) Find all asymptotes of $h(t)=\frac{t^{3}+7 t^{2}-2}{t^{2}-t+1}$.
(d) Consider $g(x)=\left(\frac{x^{2}}{2}-\frac{1}{x}\right)$. Find the limits of $g(x)$ as $x \rightarrow 0^{+}, x \rightarrow 0-, x \rightarrow \sqrt[3]{2}$ and $x \rightarrow-1$.
